Author:
Curtiss Joshua E.,Mischoulon David,Fisher Lauren B.,Cusin Cristina,Fedor Szymon,Picard Rosalind W.,Pedrelli Paola
Abstract
Abstract
Background
Predicting future states of psychopathology such as depressive episodes has been a hallmark initiative in mental health research. Dynamical systems theory has proposed that rises in certain ‘early warning signals’ (EWSs) in time-series data (e.g. auto-correlation, temporal variance, network connectivity) may precede impending changes in disorder severity. The current study investigates whether rises in these EWSs over time are associated with future changes in disorder severity among a group of patients with major depressive disorder (MDD).
Methods
Thirty-one patients with MDD completed the study, which consisted of daily smartphone-delivered surveys over 8 weeks. Daily positive and negative affect were collected for the time-series analyses. A rolling window approach was used to determine whether rises in auto-correlation of total affect, temporal standard deviation of total affect, and overall network connectivity in individual affect items were predictive of increases in depression symptoms.
Results
Results suggested that rises in auto-correlation were significantly associated with worsening in depression symptoms (r = 0.41, p = 0.02). Results indicated that neither rises in temporal standard deviation (r = −0.23, p = 0.23) nor in network connectivity (r = −0.12, p = 0.59) were associated with changes in depression symptoms.
Conclusions
This study more rigorously examines whether rises in EWSs were associated with future depression symptoms in a larger group of patients with MDD. Results indicated that rises in auto-correlation were the only EWS that was associated with worsening future changes in depression.
Publisher
Cambridge University Press (CUP)
Subject
Psychiatry and Mental health,Applied Psychology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献