Revealing the dynamic network structure of the Beck Depression Inventory-II

Author:

Bringmann L. F.,Lemmens L. H. J. M.,Huibers M. J. H.,Borsboom D.,Tuerlinckx F.

Abstract

BackgroundStructured interviews and questionnaires are important tools to screen for major depressive disorder. Recent research suggests that, in addition to studying the mean level of total scores, researchers should focus on the dynamic relations among depressive symptoms as they unfold over time. Using network analysis, this paper is the first to investigate these patterns of short-term (i.e. session to session) dynamics for a widely used psychological questionnaire for depression – the Beck Depression Inventory (BDI-II).MethodWith the newly developed vector autoregressive (VAR) multilevel method we estimated the network of symptom dynamics that characterizes the BDI-II, based on repeated administrations of the questionnaire to a group of depressed individuals who participated in a treatment study of an average of 14 weekly assessments. Also the centrality of symptoms and the community structure of the network were examined.ResultsThe analysis showed that all BDI-II symptoms are directly or indirectly connected through patterns of temporal influence. In addition, these influences are mutually reinforcing, ‘loss of pleasure’ being the most central item in the network. Community analyses indicated that the dynamic structure of the BDI-II involves two clusters, which is consistent with earlier psychometric analyses.ConclusionThe network approach expands the range of depression research, making it possible to investigate the dynamic architecture of depression and opening up a whole new range of questions and analyses. Regarding clinical practice, network analyses may be used to indicate which symptoms should be targeted, and in this sense may help in setting up treatment strategies.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3