Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis

Author:

RIDLER K.,BULLMORE E. T.,DE VRIES P. J.,SUCKLING J.,BARKER G. J.,MEARA S. J. P.,WILLIAMS S. C. R.,BOLTON P. F.

Abstract

Background. Neuroimaging studies of tuberous sclerosis complex (TSC) have previously focused mainly on tubers or subependymal nodules. Subtle pathological changes in the structure of the brain have not been studied in detail. Computationally intensive techniques for reliable morphometry of brain structure are useful in disorders like TSC, where there is little prior data to guide selection of regions of interest.Methods. Dual-echo, fast spin-echo MRI data were acquired from 10 TSC patients of normal intelligence and eight age-matched controls. Between-group differences in grey matter, white matter and cerebrospinal fluid were estimated at each intracerebral voxel after registration of these images in standard space; a permutation test based on spatial statistics was used for inference. CSF-attenuated FLAIR images were acquired for neuroradiological rating of tuber number.Results. Significant deficits were found in patients, relative to comparison subjects, of grey matter volume bilaterally in the medial temporal lobes, posterior cingulate gyrus, thalamus and basal ganglia, and unilaterally in right fronto-parietal cortex (patients −20%). We also found significant and approximately symmetrical deficits of central white matter involving the longitudinal fasciculi and other major intrahemispheric tracts (patients −21%); and a bilateral cerebellar region of relative white matter excess (patients +28%). Within the patient group, grey matter volume in limbic and subcortical regions of deficit was negatively correlated with tuber count.Conclusions. Neuropathological changes associated with TSC may be more extensive than hitherto suspected, involving radiologically normal parenchymal structures as well as tubers, although these two aspects of the disorder may be correlated.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3