DSM criteria for major depression: evaluating symptom patterns using latent-trait item response models

Author:

AGGEN STEVEN H.,NEALE MICHAEL C.,KENDLER KENNETH S.

Abstract

Background. Expert committees of clinicians have chosen diagnostic criteria for psychiatric disorders with little guidance from measurement theory or modern psychometric methods. The DSM-III-R criteria for major depression (MD) are examined to determine the degree to which latent trait item response models can extract additional useful information.Method. The dimensionality and measurement properties of the 9 DSM-III-R criteria plus duration are evaluated using dichotomous factor analysis and the Rasch and 2 parameter logistic item response models. Quantitative liability scales are compared with a binary DSM-III-R diagnostic algorithm variable to determine the ramifications of using each approach.Results. Factor and item response model results indicated the 10 MD criteria defined a reasonably coherent unidimensional scale of liability. However, person risk measurement was not optimal. Criteria thresholds were unevenly spaced leaving scale regions poorly measured. Criteria varied in discriminating levels of risk. Compared to a binary MD diagnosis, item response model (IRM) liability scales performed far better in (i) elucidating the relationship between MD symptoms and liability, (ii) predicting the personality trait of neuroticism and future depressive episodes and (iii) more precisely estimating heritability parameters.Conclusions. Criteria for MD largely defined a single dimension of disease liability although the quality of person risk measurement was less clear. The quantitative item response scales were statistically superior in predicting relevant outcomes and estimating twin model parameters. Item response models that treat symptoms as ordered indicators of risk rather than as counts towards a diagnostic threshold more fully exploit the information available in symptom endorsement data patterns.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3