Predictors of suicide attempt in patients with obsessive-compulsive disorder: an exploratory study with machine learning analysis

Author:

Agne Neusa AitaORCID,Tisott Caroline Gewehr,Ballester Pedro,Passos Ives Cavalcante,Ferrão Ygor Arzeno

Abstract

Abstract Background Patients with obsessive-compulsive disorder (OCD) are at increased risk for suicide attempt (SA) compared to the general population. However, the significant risk factors for SA in this population remains unclear – whether these factors are associated with the disorder itself or related to extrinsic factors, such as comorbidities and sociodemographic variables. This study aimed to identify predictors of SA in OCD patients using a machine learning algorithm. Methods A total of 959 outpatients with OCD were included. An elastic net model was performed to recognize the predictors of SA among OCD patients, using clinical and sociodemographic variables. Results The prevalence of SA in our sample was 10.8%. Relevant predictors of SA founded by the elastic net algorithm were the following: previous suicide planning, previous suicide thoughts, lifetime depressive episode, and intermittent explosive disorder. Our elastic net model had a good performance and found an area under the curve of 0.95. Conclusions This is the first study to evaluate risk factors for SA among OCD patients using machine learning algorithms. Our results demonstrate an accurate risk algorithm can be created using clinical and sociodemographic variables. All aspects of suicidal phenomena need to be carefully investigated by clinicians in every evaluation of OCD patients. Particular attention should be given to comorbidity with depressive symptoms.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3