2. Magneto-hydrodynamic waves in compressible fluids by finite viscosity and heat conductivity

Author:

Baños Alfredo

Abstract

The general theory of magneto-hydrodynamic waves in an ideal conducting fluid embedded in a uniform field of magnetic induction, and the application of the theory to the systematic analysis of the various modes of propagation in incompressible and compressible fluids have been presented by the author in two earlier papers[1, 2]. In these papers, however, no effort was made to include the thermodynamics of the situation, which amounts to the tacit assumption that the fluid is of zero heat conductivity. In this case the resulting modes are of two kinds: isothermal (v-modes) and adiabatic (p-modes).In this paper we first establish the conservation laws of momentum and energy for a (macroscopic) compressible fluid with finite viscosity and finite thermal and electrical conductivities, which is embedded in a uniform field of magnetic induction, and we then derive quite generally the exact (nonlinearized) equation governing the distribution of temperature in such a fluid. Next, making use of the linearized magneto-hydrodynamic wave equation in the fluid velocity, combined with the resulting heat diffusion equation and with the equation of state of the fluid, and applying the mathematical techniques developed earlier, we obtain a higher order partial differential equation in the fluid temperature from which ensue all the temperature modes.In particular, we examine in detail the behavior of plane homogeneous waves, and it is shown that a compressible fluid with the indicated properties sustains altogether six different modes, two of which are pure shear modes, devoid of density, pressure, and hence temperature fluctuations (v-modes), while the remaining four are shear-compression waves accompanied necessarily by density, pressure, and temperature fluctuations (p-modes). The two shear modes, which are isothermal, comprise a slightly attenuated Alfvén wave, and a highly attenuated viscous mode, sometimes referred to as a vorticity mode. The four shear-compression modes have in general very complex properties, but in the low frequency and low heat conductivity case they are easily identified as (1) a modified (adiabatic) sound wave slightly attenuated; (2) a slightly attenuated modified Alfvén p-wave; (3) a highly attenuated viscous wave; and (4) a highly attenuated thermal wave governed in the main by the thermal properties of the medium.

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3