Abstract
In optical SETI (OSETI) experiments, it is generally assumed that signals will be deliberate, narrowly targeted beacons sent by extraterrestrial societies to large numbers of candidate star systems. If this is so, then it may be unrealistic to expect a high duty cycle for the received signal. Ergo, an advantage accrues to any OSETI scheme that realistically suggests where and when to search. In this paper, we elaborate a proposal (Castellano, Doyle, & McIntosh 2000) for selecting regions of sky for intensive optical SETI monitoring based on characteristics of our solar system that would be visible at great distance. This can enormously lessen the amount of sky that needs to be searched. In addition, this is an attractive approach for the transmitting society because it both increases the chances of reception and provides a large reduction in energy required. with good astrometric information, the transmitter need be no more powerful than an automobile tail light.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Horowitz P. 1998, The Technical Case for Optical and Infrared SETI, http:/seti.harvard.edu/oseti/tech.pdf
2. A Transiting “51 Peg–like” Planet
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献