Amelioration of chronic fluoride toxicity by calcium and fluoride-free water in rats

Author:

Shankar Priyanka,Ghosh Sudip,Bhaskarachary K.,Venkaiah K.,Khandare Arjun L.

Abstract

The study was undertaken to explore the amelioration of chronic fluoride (F) toxicity (with low and normal Ca) in rats. The study was conducted in two phases. In phase I (6 months), seventy-six Wistar, weanling male rats were assigned to four treatment groups: normal-Ca (0·5 %) diet (NCD), Ca+F − ; low-Ca (0·25 %) diet (LCD), Ca − F − ; NCD +100 parts per million (ppm) F water, Ca+F+; LCD +100 ppm F water, Ca − F+. In phase II (reversal experiment, 3 months), LCD was replaced with the NCD. Treatment groups Ca+F+ and Ca − F+ were divided into two subgroups to compare the effect of continuationv. discontinuation along with Ca supplementation on reversal of chronic F toxicity. In phase I, significantly reduced food efficiency ratio (FER), body weight gain (BWG), faecal F excretion, serum Ca and increased bone F deposition were observed in the treatment group Ca − F+. Reduced serum 25-hydroxy-vitamin D3, increased 1,25-dihydroxy-vitamin D3and up-regulation of Ca-sensing receptor, vitamin D receptor and S100 Ca-binding protein G (S100G) were observed in treatment groups Ca − F −  and Ca − F+. In phase II (reversal phase), FER, BWG and serum Ca in treatment groups Ca − F+/Ca+F −  and Ca − F+/Ca+F+ were still lower, as compared with other groups. However, other variables were comparable. Down-regulation of S100G was observed in F-fed groups (Ca+F+/Ca+F+ and Ca − F+/Ca+F+) in phase II. It is concluded that low Ca aggravates F toxicity, which can be ameliorated after providing adequate Ca and F-free water. However, chronic F toxicity can interfere with Ca absorption by down-regulating S100G expression irrespective of Ca nutrition.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3