A model to predict water intake of a pig growing in a known environment on a known diet

Author:

Schiavon Stefano,Emmans G. C.

Abstract

A model to predict voluntary water intake (WI) of a pig fed a known diet in a known environment is described. The daily retentions of protein, lipid, water and ash were estimated over time using a published pig growth model. Food intakes were estimated using published methods. WI was estimated by adding the amounts required for digestion (WD), faecal excretion (Wfec), growth (WG), evaporation (WE), urinary excretion (WU) and by then subtracting the water arising from feed (WF), from nutrient oxidation (WO) and synthesis of body constituents (WS). WD was predicted assuming an absorption of water of 0·10, 0·16 and 0·07 kg/kg digestible carbohydrate, crude protein and lipid respectively. Wfecwas estimated taking into account the water associated with the undigested protein (0·86 kg/kg), diethyl ether extract (-12·11 kg/kg), crude fibre (1·86 kg/kg), ash (-0·42 kg/kg) and N-free extract (4·4 kg/kg). The basal level of WE was estimated from the heat production of the pig fedad libitum(MJ/d) as: 0·25×(metabolizable energy-energy retained as protein and lipid)×0·4, where 0·25 is the assumed proportion of the insensible heat loss at the comfort temperature and 0·4 is the water lost per MJ dissipated heat. WE in a hot environment was predicted by assuming that evaporation increased up to three times the basal level to offset the decreased sensible heat loss. To predict WU a water requirement for renal excretion of 2·05 and 3·40 kg/osmol excreted N as urea and minerals respectively was assumed. The urinary load of N and minerals was predicted from the intake of digestible nutrients and their retention. From the oxidation of 1 kg carbohydrate, protein, and fat it was assumed that 0·6, 0·42 and 1·07 kg water (WO) were released respectively. WS was predicted by assuming a release of 0·16, 0·07 and 0·57 kg water per kg retained protein, retained lipid coming from digestible lipid, and retained lipid coming from digestible carbohydrate respectively. The model is strongly rooted in a theoretical structure. When its predictions were compared with data from suitable experiments, the results were not significantly different. Both the pattern and the magnitude of responses of the model to changes in body weight, feed intake and environmental temperature are sensible and it allows a fuller prediction of voluntary water intake than the methods currently available.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference56 articles.

1. THE INFLUENCE OF BODILY HYDRATION ON THE RENAL CONCENTRATING PROCESS 1

2. Evaluation of dietary salt levels for swine. I. Effect on gain, water consumption and efficiency of feed consumption;Hangsten;Journal of Animal Science,1976

3. Food restriction as a cause of stereotypic behaviour in tethered gilts

4. Nutritional implications ofl-arabinose in pigs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3