Author:
Jin Fuxia,Frohman Charles,Thannhauser Theodore W.,Welch Ross M.,Glahn Raymond P.
Abstract
The effects of ascorbic acid (AA), phytate and tannic acid (TA) on Fe bioavailability from Fe supplied as reconstituted ferritin were compared with FeSO4using anin vitrodigestion–Caco-2 cell model. Horse spleen apoferritin was chemically reconstituted into an animal-type ferritin (HSF) and a plant-type ferritin (P-HSF) according to the typical ratios of Fe:P found in these molecules. In the presence of AA (Fe:AA molar ratio of 1:20), significantly more Fe was absorbed from FeSO4(about 303 %), HSF (about 454 %) and P-HSF (about 371 %) when compared with ferrous sulfate or ferritin without AA. Phytic acid (PA; Fe:PA molar ratio of 1:20) significantly reduced Fe bioavailability from FeSO4(about 86 %), HSF (about 82 %) and P-HSF (about 93 %) relative to FeSO4and the ferritin controls. Treatment with TA (Fe:TA molar ratio of 1:1) significantly decreased Fe bioavailability (about 97 %) from both FeSO4and the ferritin samples. AA was able to partially reverse the negative effect of PA (Fe:PA:AA molar ratio of 1:20:20) on Fe bioavailability but did not reverse the inhibiting effect of TA (Fe:TA:AA molar ratio of 1:1:20) on Fe bioavailability from ferritin and FeSO4. Overall, there were no significant differences in bioavailable Fe between P-HSF, HSF or FeSO4. Furthermore, the addition of AA (a known promoter) or the inhibitors, PA and TA, or both, did not result in significant differences in bioavailable Fe from ferritin relative to FeSO4. The results suggest that Fe in the reconstituted ferritin molecule is easily released duringin vitrodigestion and interacts with known promoters and inhibitors.
Publisher
Cambridge University Press (CUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献