ASSESSING 14C BLANKS IN THE SMALL-SCALE ANALYSIS OF N-ALKANE COMPOUND-SPECIFIC-RADIOCARBON-ANALYSIS

Author:

Reetz KristinaORCID,Friedrich RonnyORCID,Birk Jago J,Rosendahl Wilfried,Fiedler Sabine

Abstract

ABSTRACTCompound-specific radiocarbon analysis (CSRA) provides the possibility to date sample material at a molecular level. N-alkanes are considered as specific compounds with high potential to CSRA. As these compounds originate from plant waxes, their radiocarbon (14C) analysis can provide valuable information about the age and origin of organic materials. This helps to reconstruct and understand environmental conditions and changes in vegetation in the past. However, CSRA has two main challenges: The small sample size of CSRA samples, making them extremely sensitive to blank effects, and the input of unknown amounts of extraneous carbon during the analytical procedure. According to the previous study from Sun and co-workers, we used different-sized aliquots of leaves Fagus sylvatica (nC27, nC29) and Festuca rubra agg (nC31, nC33) as modern standards and two commercial standards (nC26, nC28) as fossil standards for blank determination. A third commercial standard (nC27) with predetermined radiocarbon content of F14C = 0.71 (14C age of 2700 BP) serves to evaluate the blank correction. We found that the blank assessment of Sun and co-workers is also applicable to n-alkanes, with a minimum sample size of 15 µg C for dependable CSRA dates. We determined that the blank introduced during the analytical procedure has a mass of (4.1 ± 0.7) µg carrying a radiocarbon content of F14C = 0.25 ± 0.05. Applying the blank correction to a sediment sample from Lake Holzmaar (Germany) shows that all four isolated n-alkanes have similar 14C ages. However, the bulk material of the sediment and branches found in the sediment core are younger than the CSRA dates. We conclude that the disparity between the actual age of analysed organic material and the age inferred from radiocarbon results, which can occur in sediment traps due to delayed deposition, is the reason for the CSRA age.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3