MONITORING OF MODERN CARBON FRACTION IN DISPOSABLE PACKAGING

Author:

Gill Komal AzizORCID,Michczyńska Danuta JORCID,Michczyński AdamORCID,Piotrowska NataliaORCID

Abstract

ABSTRACT Radiocarbon (14C) methodology was used to investigate the presence of biocarbon in different bio-based disposable packaging products. Packaging waste contributes to a municipal solid waste, which is increasing environmental concerns and resulting in the enhancement of EU regulations that aim to reduce packaging waste. The 14C amount in samples reflects how much of the biocarbon has been used. In this study, the concentration of 14C was determined in commonly used types of disposable packaging, such as cups, plates, straws, cutlery, and baking paper. Samples were made of materials such as paper, wheat bran, sugarcane, and wood. The mean concentration of the 14C isotope, measured by the accelerator mass spectrometry (AMS) technique, is greater than 100 pMC in all tested samples, indicating that the samples are modern. The relatively high 14C concentration values in the waterproof layer of the sample indicate that bioplastic, rather than plastic, was used in its production. The highest 14C isotope concentration values were measured for samples that used the oldest biomass (wood and paper), and the lowest for products from current crops (sugarcane and wheat bran), which is consistent with the trend of changes in 14C concentration in the biosphere. The study also addresses the problem of heterogeneity and representativeness of subsamples.

Publisher

Cambridge University Press (CUP)

Reference30 articles.

1. The environmental benefits of improving packaging waste collection in Europe;Tallentire;Waste Management,2020

2. BATS: a new tool for ams data reduction;Wacker;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2010

3. Krajcar Bronić, I , Barešić, J , Horvatinčić, N. 2015. Determination of biogenic component in waste and liquid fuels by the 14C method.

4. Consumers’ behaviours related to packaging and their attitudes towards environment;Jeżewska-Zychowicz;Journal of Agribusiness and Rural Development,2015

5. Study of bio-based carbon fractions in tires and their pyrolysis products;Gill;Radiocarbon,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3