Numerical simulation of circulation control turbine cascade with Coanda jet and counter-flow blowing at high Mach numbers

Author:

Feng Y.,Song Y.,Chen F.

Abstract

ABSTRACTThe performance of a circulation-control inlet guide vane that makes use of the Coanda effect was studied numerically in a high Mach number turbine cascade. The effect of different shapes (elliptic and circular) of the Coanda surface at the blade trailing edge was investigated by implementing both a Coanda jet and a counter-flow blowing. Under high subsonic flow conditions, with a total blowing ratio of 3% of the mainstream, the circulation control cascade can reach the same performance as the reference stator with a 13.5% reduction in the axial chord length, with minimal increase of the energy loss coefficient. The Coanda surfaces with small curvature are more efficient in entraining the mainstream flow, and they achieve better aerodynamic performance. The wall attachment of the Coanda jet is improved by employing counter-flow blowing, resulting in a slight increase of both the exit flow angle and the expansion ratio. Under supersonic flow conditions at the cascade exit, it is more difficult for the circulation control cascade to reach the appropriate flow turning due to a premature shock wave, which is absent in the original cascade until the very end of the suction surface.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluid Property Effects on the Splashing in Teapot Effect;The Journal of Physical Chemistry C;2018-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3