Author:
Hayes R.,Dwight R.,Marques S.
Abstract
ABSTRACTThe assimilation of discrete data points with model predictions can be used to achieve a reduction in the uncertainty of the model input parameters, which generate accurate predictions. The problem investigated here involves the prediction of limit-cycle oscillations using a High-Dimensional Harmonic Balance (HDHB) method. The efficiency of the HDHB method is exploited to enable calibration of structural input parameters using a Bayesian inference technique. Markov-chain Monte Carlo is employed to sample the posterior distributions. Parameter estimation is carried out on a pitch/plunge aerofoil and two Goland wing configurations. In all cases, significant refinement was achieved in the distribution of possible structural parameters allowing better predictions of their true deterministic values. Additionally, a comparison of two approaches to extract the true values from the posterior distributions is presented.
Publisher
Cambridge University Press (CUP)
Reference35 articles.
1. Hayes R. , Marques S. and Yao W. The influence of structural modeshape variability on limit cycle oscillation behaviour, 2014, Paper presented at 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, Georgia, US.
2. Bayesian calibration of computer models
3. Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces
4. Prediction of limit cycle oscillations under uncertainty using a Harmonic Balance method
5. Dwight R.P. , Bijl H. , Marques S. and Badcock K. Reducing uncertainty in aeroelastic flutter boundaries using experimental data, (IFASD-2011-71), 2011, Presented at the International Forum for Aeroelasticity and Structural Dynamics, Paris, France.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献