Design study of Coanda devices for transonic circulation control

Author:

Forster M.,Steijl R.

Abstract

ABSTRACTCirculation control via blowing over Coanda surfaces at transonic freestream Mach numbers is investigated using numerical simulations. The performance and sensitivity of several circulation control devices applied to a supercritical aerofoil are assessed. Different Coanda devices were studied to assess the effect of Coanda radius-to-slot height ratio, nozzle shape and Coanda surfaces with a step. The range of operating conditions for which a supersonic Coanda jet remained attached at transonic freestream conditions were extended by increasing the radius of curvature at the slot exit for Coanda devices with a converging nozzle. Additional improvements were found by reducing the strength of shock boundary-layer interactions on the Coanda surface by expanding the jet flow using a converging-diverging nozzle and also by introducing a step between the Coanda surface and the nozzle exit. The performance when using a converging-diverging nozzle can be matched using a simple stepped Coanda device. It is shown that circulation control has the potential to match the performance of traditional control surfaces during regimes of attached flow at transonic speeds, up to an equivalent aileron deflection angle of 10°. In addition, lift augmentation ratios ΔCl/Cμof over 100 were achieved.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3