Rapid gust response simulation of large civil aircraft using computational fluid dynamics

Author:

Bekemeyer P.,Thormann R.,Timme S.

Abstract

ABSTRACTSeveral critical load cases during the aircraft design process result from atmospheric turbulence. Thus, rapidly performable and highly accurate dynamic response simulations are required to analyse a wide range of parameters. A method is proposed to predict dynamic loads on an elastically trimmed, large civil aircraft using computational fluid dynamics in conjunction with model reduction. A small-sized modal basis is computed by sampling the aerodynamic response at discrete frequencies and applying proper orthogonal decomposition. The linear operator of the Reynolds-averaged Navier-Stokes equations plus turbulence model is then projected onto the subspace spanned by this basis. The resulting reduced system is solved at an arbitrary number of frequencies to analyse responses to 1-cos gusts very efficiently. Lift coefficient and surface pressure distribution are compared with full-order, non-linear, unsteady time-marching simulations to verify the method. Overall, the reduced-order model predicts highly accurate global coefficients and surface loads at a fraction of the computational cost, which is an important step towards the aircraft loads process relying on computational fluid dynamics.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference33 articles.

1. Reimer L. , Ritter M. , Heinrich R. and Krüger W. CFD-based gust load analysis for a free-flying flexible passenger aircraft in comparison to a DLM-based approach, 22nd AIAA Computational Fluid Dynamics Conference, 2015, AIAA 2015-2455, Dallas, TX, US.

2. Reduced-order modeling: new approaches for computational physics

3. Turbulence, Coherent Structures, Dynamical Systems and Symmetry

4. Dimitrov D. and Thormann R. DLM-correction methods for aerodynamic gust response prediction, International Forum on Aeroelasticity and Structural Dynamics (IFASD), 2013, IFASD 2013-24C, Bristol, England.

5. Lumley J.L. The structures of inhomogeneous turbulent flow, Atmospheric Turbulence and Radio Wave Propagation, 1967, pp 166-178.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3