Characteristics of a plasma wind tunnel for the development of thermal protection materials

Author:

Hong B. G.,Kang B. R.,Choi J. C.,Oh P. Y.

Abstract

ABSTRACTThermal plasma wind tunnels with power of 0.4 MW and 2.4 MW have been constructed at Chonbuk National University (CBNU) in Korea. This facility is capable of producing a heat flux greater than 10 MW/m2, a level that is relevant for testing thermal protection materials that are used for re-entry vehicles in space transportation. A segmented arc plasma torch was adopted as a plasma source; this was designed to have high thermal efficiency and long life, and to produce a supersonic plasma flow with enthalpy greater than 10 MJ/kg. We investigated the characteristics of the supersonic plasma flow using intrusive and non-intrusive diagnostic systems. Ablation characteristics of potential thermal protection materials such as carbon/carbon composites and graphite were investigated with the plasma wind tunnel. Cracks and pores in the materials accelerated the erosion. For carbon/carbon composites, the pores grew and the cracks which occurred at the interfaces between the carbon fibres and the matrix propagated, while for the graphite, the erosion started at the pores and peeled off the surface.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference12 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3