Computational study of drag increase due to wall roughness for hypersonic flight

Author:

Wang L.,Zhao Y.,Fu S.

Abstract

ABSTRACTIn this study, a series of numerical experiments are performed on supersonic/hypersonic flows over an adiabatic flat plate with transitionally and fully rough surfaces. The Mach numbers simulated are 4, 5, 6, and 7; the flight heights considered are 20, 24, 28, 32, and 36 km. First, a modified roughness correction is proposed and validated with the measured data for low-speed flat-plate cases. It is verified that for the equivalent sand grain heights in the intermediate and fully rough regimes, there is a good agreement with the semi-empirical formula available in the open literature. Then, this roughness correction is applied to high-speed flow regime to investigate the effects of flight heights and Mach numbers on drag for rough-wall flat-plate cases. It is found that within the roughness measured in real flight, the roughness height change has little effect on drag compared to the variations of both flight heights and Mach numbers. The drag coefficient derivation between rough-wall and smooth-wall conditions, achieves the maximum value of 0.79% for the 60 cases selected.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3