Supporting peace negotiations in the Yemen war through machine learning

Author:

Arana-Catania Miguel,van Lier Felix-Anselm,Procter RobORCID

Abstract

Abstract Today’s conflicts are becoming increasingly complex, fluid, and fragmented, often involving a host of national and international actors with multiple and often divergent interests. This development poses significant challenges for conflict mediation, as mediators struggle to make sense of conflict dynamics, such as the range of conflict parties and the evolution of their political positions, the distinction between relevant and less relevant actors in peace-making, or the identification of key conflict issues and their interdependence. International peace efforts appear ill-equipped to successfully address these challenges. While technology is already being experimented with and used in a range of conflict related fields, such as conflict predicting or information gathering, less attention has been given to how technology can contribute to conflict mediation. This case study contributes to emerging research on the use of state-of-the-art machine learning technologies and techniques in conflict mediation processes. Using dialogue transcripts from peace negotiations in Yemen, this study shows how machine-learning can effectively support mediating teams by providing them with tools for knowledge management, extraction and conflict analysis. Apart from illustrating the potential of machine learning tools in conflict mediation, the article also emphasizes the importance of interdisciplinary and participatory, cocreation methodology for the development of context-sensitive and targeted tools and to ensure meaningful and responsible implementation.

Funder

International IDEA

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The promise of machine learning in violent conflict forecasting;Data & Policy;2024

2. PeaceTech Drivers;PeaceTech: Digital Transformation to End Wars;2023-12-31

3. Leveraging digital methods in the quest for peaceful futures: the interplay of sincere and subjunctive technology affordances in peace mediation;Information, Communication & Society;2023-08-20

4. From Preference Elicitation to Participatory ML: A Critical Survey & Guidelines for Future Research;Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3