Algorithm for Quantifying Frontal EMG Responsiveness for Sedation Monitoring

Author:

Lapinlampi Timo Petteri,Viertiö-Oja Hanna Elina,Helin Matti,Uutela Kimmo Henrik,Särkelä Mika Olli Kristian,Vakkuri Anne,Young Gordon Bryan,Walsh Timothy Simon

Abstract

AbstractIntroductionTo study stimulation-related facial electromyographic (FEMG) activity in intensive care unit (ICU) patients, develop an algorithm for quantifying the FEMG activity, and to optimize the algorithm for monitoring the sedation state of ICU patients.MethodsFirst, the characteristics of FEMG response patterns related to vocal stimulation of 17 ICU patients were studied. Second, we collected continuous FEMG data from 30 ICU patients. Based on these data, we developed the Responsiveness Index (RI) algorithm that quantifies FEMG responses. Third, we compared the RI values with clinical sedation level assessments and adjusted algorithm parameters for best performance.ResultsIn patients who produced a clinically observed response to the vocal stimulus, the poststimulus FEMG power was 0.33 µV higher than the prestimulus power. In nonresponding patients, there was no difference. The sensitivity and specificity of the developed RI for detecting deep sedation in the subgroup with low probability of encephalopathy were 0.90 and 0.79, respectively.ConclusionConsistent FEMG patterns were found related to standard stimulation of ICU patients. A simple and robust algorithm was developed and good correlation with clinical sedation scores achieved in the development data.

Publisher

Cambridge University Press (CUP)

Subject

Neurology (clinical),Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3