Genetic correlations between linear type traits, food intake, live weight and condition score in Holstein Friesian dairy cattle

Author:

Veerkamp R. F.,Brotherstone S.

Abstract

AbstractVariance components were estimated from an animal model using a restricted maximum likelihood procedure which allowed for unequal design matrices and missing observations (VCE). Data sets containing: (i) 15 275 records of linear type classifications on heifers, (ii) 3399 live weight and condition scores measured at calving and (iii) 1157 records of yield, dry-matter intake, average live weight and condition score during the first 26 weeks of lactation; were analysed jointly.Heritability estimates for dry-matter intake, live weight and condition score in the largest data set were 0·44, 0·44 and 0·35 respectively and the genetic correlation between condition score and the yield traits ranged from −0·29 to −0·46. The genetic correlation between milk yield and average live weight was negative (−0·09) but after adjusting for the genetic variation in condition score this correlation was positive (0·29). Genetic correlations between live weight and stature, chest width, body depth and rump width were consistently high (0·52 to 0·64; 0·75 to 0·86; 0·59 to 0·81; 0·56 to 0·74, respectively). Chest width and body depth were little to moderately correlated with dry-matter intake (0·25 to 0·28 and 0·20 to 0·34 respectively), and angularity (−0·47 to −0·77) and chest width (0·32 to 0·73) appeared to be good predictors of condition score. These correlations showed that (i) the relative value of live weight compared with food intake capacity determines the optimum direction of selection for stature, chest width, body depth and angularity, and consequently the optimum size of the dairy cow, and that (ii) live weight, condition score and food intake can be predicted from the type traits with little loss in accuracy. A restricted index which maintains condition score at its current level was predicted to reduce overall (economic) genetic gain by 5%.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3