Genetic and epidemiological relationships between productivity and disease resistance: gastro-intestinal parasite infection in growing lambs

Author:

Bishop S. C.,Stear M. J.

Abstract

AbstractThis paper demonstrates how interactions between host genotype for resistance to an infectious disease and the epidemiology of that disease can have large influences on animal productivity and hence on breeding goals for domestic livestock. This is illustrated for the case of gastro-intestinal parasitism in lambs. A model of the parasite infection was developed to include between-animal variation (genetic, permanent and temporary environmental) for live-weight gain, food intake, larval establishment rate in the host, worm fecundity and worm mortality rate. Achieved live-weight gain was defined as the sum of potential live-weight gain under conditions of no parasite infection, a trait correlated with food intake and growth-rate reduction due to the infection. The reduction in growth-rate was calculated from cumulative larval challenge and cumulative worm mass in the lamb. Genetic parameters were then estimated for the output traits of observed live weight at 6 months of age, growth rate reduction and faecal egg count. Model parameters were chosen so that the output means and heritabilities for faecal egg count and live-weight gain mimicked field data for Scottish Blackface lambs and growth-rate reductions were proportionately 0·25 , on average. The model predicted a weak phenotypic correlation (mean = -0·10) between observed live weight and faecal egg count, the indicator of resistance but a stronger favourable (negative) genetic correlation between these traits (mean = -0·27). The severity, or epidemiology, of the disease greatly influenced the results - the genetic correlation between observed live weight and faecal egg count strengthened from -0·02 to -0·46 as the disease severity changed from mild to severe. Selection for reduced faecal egg count resulted in large correlated increases in live-weight gain, more than twice that predicted by quantitative genetic theory, due to the reductions in growth rate losses as the disease challenge to the animals decreased. Conversely, selection for increased live-weight gain resulted in reductions in faecal egg count close to expectations. This asymmetry of selection response emphasizes the epidemiological benefits obtainable from selection for resistance to infectious chronic diseases - such selection will result in improvements in both animal health and productivity not seen when selection is for improved productivity, alone. Breeding goals should be designed to take account of such effects.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

Reference25 articles.

1. The effect of daily intake of Ostertagia circumcincta larvae on body weight, food intake and concentration of serum constituents in sheep;Coop;Research in Veterinary Science,1977

2. Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta

3. Effect of selection for productive traits on internal parasite resistance in sheep;McEwan;Proceedings of the New Zealand Society of Animal Production,1992

4. Responses of Romney sheep to selection for resistance or susceptibility to nematode infection

5. Genetic estimates for parasite resistance traits in sheep and their correlations with production traits;McEwan;New Zealand Journal of Zoology,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3