The influence of sow behaviour on piglet mortality due to crushing in an open farrowing system

Author:

Marchant J. N.,Broom D. M.,Corning S.

Abstract

AbstractThe objectives of this study were to establish what changes in posture by sows carried a high risk of piglet crushing in a group farrowing system during early lactation and also to determine what factors influenced the risk of crushing during lying down. A total of 24 Large White ✕ Landrace sows were studied during the first 7 days of lactation in a group farrowing system. Cross-fostering was not carried out so as not to influence behaviour. Dead piglets were removed and cause of death ascertained from external observation and post-mortem examination. Sow and piglet behaviour was video-recorded continuously. A total of 268 piglets were born alive, with 67 liveborn piglets subsequently dying during the 7-day experimental period, 50 as a result of crushing. A total of 7425 posture changes were analysed and 11 types of posture change were identified, the most dangerous being lying down from standing and those involving swapping sides, or rolling over, whilst lying.Dangerous events during lying down were more likely to occur (1) in the first 24 h after farrowing, (2) when the sow lay down in the middle of the pen, (3) when the sow lay down without carrying out much piglet-directed pre-lying behaviour and (4) when the piglets were spread out but near to the sow. The amount of pre-lying behaviour decreased over time and crushing mortality also decreased. The results confirm that the piglets are most vulnerable to crushing during the first 24 h of life, when they are spending much of their time near the udder and have relatively poor mobility. Co-ordination of behaviour between the sow and her litter is important to reduce the risk of crushing. It is also important that the design of open farrowing systems incorporates knowledge about how crushing deaths occur in order to improve piglet welfare.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3