The many faces of synapsid cranial allometry

Author:

Krone Isaac W.ORCID,Kammerer Christian F.,Angielczyk Kenneth D.

Abstract

AbstractPrevious studies of cranial shape have established a consistent interspecific allometric pattern relating the relative lengths of the face and braincase regions of the skull within multiple families of mammals. In this interspecific allometry, the facial region of the skull is proportionally longer than the braincase in larger species. The regularity and broad taxonomic occurrence of this allometric pattern suggests that it may have an origin near the base of crown Mammalia, or even deeper in the synapsid or amniote forerunners of mammals. To investigate the possible origins of this allometric pattern, we used geometric morphometric techniques to analyze cranial shape in 194 species of nonmammalian synapsids, which constitute a set of successive outgroups to Mammalia. We recovered a much greater diversity of allometric patterns within nonmammalian synapsids than has been observed in mammals, including several instances similar to the mammalian pattern. However, we found no evidence of the mammalian pattern within Therocephalia and nonmammalian Cynodontia, the synapsids most closely related to mammals. This suggests that the mammalian allometric pattern arose somewhere within Mammaliaformes, rather than within nonmammalian synapsids. Further investigation using an ontogenetic series of the anomodont Diictodon feliceps shows that the pattern of interspecific allometry within anomodonts parallels the ontogenetic trajectory of Diictodon. This indicates that in at least some synapsids, allometric patterns associated with ontogeny may provide a “path of least resistance” for interspecific variation, a mechanism that we suggest produces the interspecific allometric pattern observed in mammals.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference60 articles.

1. Evolution of cranial telescoping in echolocating whales (Cetacea: Odontoceti)

2. The allometry and scaling of the size of vertebrate eyes

3. Adams D. C. , M. Collyer , A. Kaliontzopoulou , and E. Sherratt . 2016. Geomorph: software for geometric morphometric analyses. https://cran.r-project.org/web/packages/geomorph/index.html, accessed September 1, 2017.

4. A redescription ofOrovenator mayorum(Sauropsida, Diapsida) using high‐resolution μCT, and the consequences for early amniote phylogeny

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3