Bringing planktonic crinoids back to the bottom: Reassessment of the functional role of scyphocrinoid loboliths

Author:

Gorzelak PrzemysławORCID,Kołbuk Dorota,Salamon Mariusz A.,Łukowiak Magdalena,Ausich William I.,Baumiller Tomasz K.

Abstract

AbstractLiving crinoids are exclusively passive suspension feeders and benthic as adults. However, in the past they adapted to a broad range of ecological niches. For instance, the stratigraphically important middle Paleozoic scyphocrinoids are hypothesized to have been planktonic, employing their inferred gas-filled globular, chambered structure at the distal end of the stem, the so-called lobolith, as a buoyancy device with the crinoid calyx suspended below it. Here, we evaluate this hypothesis using evidence from skeletal micromorphology and theoretical biomechanical modeling. Lobolith walls are typically composed of ossicles, which are exclusively composed of constructional labyrinthic stereom. In plates from the distal side of the lobolith, this stereom extends into microperforate stereom layer, forming wavy ridges and spines. No microscale adaptations for preventing gas leaks and/or ingress of water (such as internal and external imperforate stereom layers) are known. Furthermore, theoretical calculations suggest that the scyphocrinoid tow-net mode of feeding would have resulted in small relative velocities between the towed filter and the ambient water, thus making it an ineffective passive filter feeder. We suggest that the lobolith of these crinoids acted as a modified holdfast rather than as a floating buoy. Its globular shape and distally positioned microspines served as adaptations for living in unconsolidated sediments, analogous to iceberg- and snowshoe-like strategies used by some mollusks and brachiopods. Like modern isocrinids, scyphocrinoids could have maintained an upright feeding posture by extending the distal portion of the stalk along the bottom. In this recumbent posture, the distal part of the stalk with the lobolith might have functioned as a drag anchor. As a consequence of the ~3-m-long stem, even with this posture, the benthic scyphocrinoids could have risen to the highest epifaunal tier in the Paleozoic.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference93 articles.

1. Conodont and crinoid stratigraphy of the upper Silurian and Lower Devonian scyphocrinoid beds of Tafilalt, southeastern Morocco

2. Morphologic adaptations of benthic invertebrates to soft substrata;Thayer;Journal of Marine Research,1975

3. Stereom microstructure of the echinoid test;Smith;Special Papers in Palaeontogy,1980

4. On Siluric and Devonic Cystidea and Camarocrinus;Schuchert;Smithsonian Miscellaneous Collections,1904

5. Crinoid Anchoring Strategies for Soft-Bottom Dwelling

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3