Effect handlers via generalised continuations

Author:

HILLERSTRÖM DANIELORCID,LINDLEY SAM,ATKEY ROBERT

Abstract

AbstractPlotkin and Pretnar’s effect handlers offer a versatile abstraction for modular programming with user-defined effects. This paper focuses on foundations for implementing effect handlers, for the three different kinds of effect handlers that have been proposed in the literature: deep, shallow, and parameterised. Traditional deep handlers are defined by folds over computation trees and are the original construct proposed by Plotkin and Pretnar. Shallow handlers are defined by case splits (rather than folds) over computation trees. Parameterised handlers are deep handlers extended with a state value that is threaded through the folds over computation trees. We formulate the extensions both directly and via encodings in terms of deep handlers and illustrate how the direct implementations avoid the generation of unnecessary closures. We give two distinct foundational implementations of all the kinds of handlers we consider: a continuation-passing style (CPS) transformation and a CEK-style abstract machine. In both cases, the key ingredient is a generalisation of the notion of continuation to accommodate stacks of effect handlers. We obtain our CPS translation through a series of refinements as follows. We begin with a first-order CPS translation into untyped lambda calculus which manages a stack of continuations and handlers as a curried sequence of arguments. We then refine the initial CPS translation by uncurrying it to yield a properly tail-recursive translation and then moving towards more and more intensional representations of continuations in order to support different kinds of effect handlers. Finally, we make the translation higher order in order to contract administrative redexes at translation time. Our abstract machine design then uses the same generalised continuation representation as the CPS translation. We have implemented both the abstract machine and the CPS transformation (plus extensions) as backends for the Links web programming language.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference59 articles.

1. Staged generic programming;Yallop;PACMPL,2017

2. Effect handlers in scope

3. Monads for functional programming;Wadler;Computer Science,1995

4. Remy, D. (1993). Syntactic Theories and the Algebra of Record Terms. Technical report RR-1869. INRIA.

5. An Introduction to Algebraic Effects and Handlers. Invited tutorial paper

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soundly Handling Linearity;Proceedings of the ACM on Programming Languages;2024-01-05

2. Asymptotic speedup via effect handlers;Journal of Functional Programming;2024

3. Verifying an Effect-Handler-Based Define-By-Run Reverse-Mode AD Library;Logical Methods in Computer Science;2023-10-23

4. From Capabilities to Regions: Enabling Efficient Compilation of Lexical Effect Handlers;Proceedings of the ACM on Programming Languages;2023-10-16

5. A General Fine-Grained Reduction Theory for Effect Handlers;Proceedings of the ACM on Programming Languages;2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3