Fold–unfold lemmas for reasoning about recursive programs using the Coq proof assistant

Author:

DANVY OLIVIERORCID

Abstract

Abstract Fold–unfold lemmas complement the rewrite tactic in the Coq Proof Assistant to reason about recursive functions, be they defined locally or globally. Each of the structural cases gives rise to a fold–unfold lemma that equates a call to this function in that case with the corresponding case branch. As such, they are “boilerplate” and can be generated mechanically, though stating them by hand is a learning experience for a beginner, to say nothing about explaining them. Their proof is generic. Their use is precise (e.g., in terms with multiple calls) and they scale seamlessly (e.g., to continuation-passing style and to various patterns of recursion), be the reasoning equational or relational. In the author’s experience, they prove effective in the classroom, considering the clarity of discourse in the subsequent term reports and oral exams, and beyond the classroom, considering their subsequent use when continuing to work with the Coq Proof Assistant. Fold–unfold lemmas also provide a measure of understanding as well as of control about what is cut short when one uses a shortcut, i.e., an automated simplification tactic. Since Version 8.0, the functional-induction plugin provides them for functions that are defined globally, i.e., recursive equations, and so does the Equations plugin now, both for global and for local declarations, a precious help for advanced users.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference26 articles.

1. Burstall, R. M. & Landin, P. J. (1969) Programs and their proofs: An algebraic approach. In Machine Intelligence, Meltzer, B. & Michie, D. (eds), vol. 4. Edinburgh University Press, pp. 17–43.

2. Danvy, O. & Goldberg, M. (2005) There and back again. Fundamenta Informaticae 66(4), 397–413. A preliminary version was presented at the 2002 ACM SIGPLAN International Conference on Functional Programming (ICFP 2002).

3. Gowers, T. (2000) The two cultures of mathematics. In Mathematics: Frontiers and Perspectives. AMS.

4. Certified Programming with Dependent Types

5. Rota, G.-C. (1996) Indiscrete Thoughts. Birkhaüser.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic;Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs;2024-01-09

2. Fold-unfold lemmas for reasoning about recursive programs using the Coq proof assistant – ERRATUM;Journal of Functional Programming;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3