A domain-theoretic approach to functional and logic programming

Author:

Silbermann Frank S. K.,Jayaraman Bharat

Abstract

AbstractThe integration of functional and logic programming languages has been a topic of great interest in the last decade. Many proposals have been made, yet none is completely satisfactory especially in the context of higher order functions and lazy evaluation. This paper addresses these shortcomings via a new approach: domain theory as a common basis for functional and logic programming. Our integrated language remains essentially within the functional paradigm. The logic programming capability is provided by set abstraction (via Zermelo-Frankel set notation), using the Herbrand universe as a set abstraction generator, but for efficiency reasons our proposed evaluation procedure treats this generator's enumeration parameter as a logical variable. The language is defined in terms of (computable) domain-theoretic constructions and primitives, using the lower (or angelic) powerdomain to model the set abstraction facility. The result is a simple, elegant and purely declarative language that successfully combines the most important features of both pure functional programming and pure Horn logic programming. Referential transparency with respect to the underlying mathematical model is maintained throughout. An implicitly correct operational semantics is obtained by direct execution of the denotational semantic definition, modified suitably to permit logical variables whenever the Herbrand universe is being generated within a set abstraction. Completeness of the operational semantics requires a form of parallel evaluation, rather than the more familiar left-most rule.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference44 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of stream processing;Acta Informatica;1997-07-14

2. The integration of functions into logic programming: From theory to practice;The Journal of Logic Programming;1994-05

3. A graph reduction technique with sharing across narrowings for functional-logic languages;Programming Language Implementation and Logic Programming;1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3