Abstract
Abstract
We present a general methodology of proving the decidability of equational theory of programming language concepts in the framework of second-order algebraic theories. We propose a Haskell-based analysis tool, i.e. Second-Order Laboratory, which assists the proofs of confluence and strong normalisation of computation rules derived from second-order algebraic theories. To cover various examples in programming language theory, we combine and extend both syntactical and semantical results of the second-order computation in a non-trivial manner. We demonstrate how to prove decidability of various algebraic theories in the literature. It includes the equational theories of monad and λ-calculi, Plotkin and Power’s theory of states and bits, and Stark’s theory of π-calculus. We also demonstrate how this methodology can solve the coherence of monoidal categories.
Publisher
Cambridge University Press (CUP)
Reference71 articles.
1. Principal type-schemes for functional programs
2. Second-Order and Dependently-Sorted Abstract Syntax
3. Wadler, P. 1990 (June) Comprehending monads. In ACM Conference on Lisp and Functional Programming, pp. 61–78.
4. Free Σ-Monoids: A Higher-Order Syntax with Metavariables
5. Libal, T. & Miller, D. (2016) Functions-as-constructors higher-order unification. In Proceedings of FSCD 2016. Leibniz International Proceedings in Informatics (LIPIcs), vol. 52, pp. 26:1–26:17.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献