The expressive power of higher-order types or, life without CONS

Author:

JONES NEIL D.

Abstract

Compare first-order functional programs with higher-order programs allowing functions as function parameters. Can the the first program class solve fewer problems than the second? The answer is no: both classes are Turing complete, meaning that they can compute all partial recursive functions. In particular, higher-order values may be first-order simulated by use of the list constructor ‘cons’ to build function closures. This paper uses complexity theory to prove some expressivity results about small programming languages that are less than Turing complete. Complexity classes of decision problems are used to characterize the expressive power of functional programming language features. An example: second-order programs are more powerful than first-order, since a function f of type [Bool]-〉Bool is computable by a cons-free first-order functional program if and only if f is in PTIME, whereas f is computable by a cons-free second-order program if and only if f is in EXPTIME. Exact characterizations are given for those problems of type [Bool]-〉Bool solvable by programs with several combinations of operations on data: presence or absence of constructors; the order of data values: 0, 1, or higher; and program control structures: general recursion, tail recursion, primitive recursion.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Declassification Policy for Program Complexity Analysis;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. Polynomial Time and Dependent Types;Proceedings of the ACM on Programming Languages;2024-01-05

3. Asymptotic speedup via effect handlers;Journal of Functional Programming;2024

4. Origami: (un)folding the Abstraction of Recursion Schemes for Program Synthesis;Genetic and Evolutionary Computation;2024

5. A General Noninterference Policy for Polynomial Time;Proceedings of the ACM on Programming Languages;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3