MultiMLton: A multicore-aware runtime for standard ML

Author:

SIVARAMAKRISHNAN K. C.,ZIAREK LUKASZ,JAGANNATHAN SURESH

Abstract

AbstractMultiMLton is an extension of the MLton compiler and runtime system that targets scalable, multicore architectures. It provides specific support for ACML, a derivative of Concurrent ML that allows for the construction of composable asynchronous events. To effectively manage asynchrony, we require the runtime to efficiently handle potentially large numbers of lightweight, short-lived threads, many of which are created specifically to deal with the implicit concurrency introduced by asynchronous events. Scalability demands also dictate that the runtime minimize global coordination. MultiMLton therefore implements a split-heap memory manager that allows mutators and collectors running on different cores to operate mostly independently. More significantly, MultiMLton exploits the premise that there is a surfeit of available concurrency in ACML programs to realize a new collector design that completely eliminates the need for read barriers, a source of significant overhead in other managed runtimes. These two symbiotic features - a thread design specifically tailored to support asynchronous communication, and a memory manager that exploits lightweight concurrency to greatly reduce barrier overheads - are MultiMLton's key novelties. In this article, we describe the rationale, design, and implementation of these features, and provide experimental results over a range of parallel benchmarks and different multicore architectures including an 864 core Azul Vega 3, and a 48 core non-coherent Intel SCC (Single-Cloud Computer), that justify our design decisions.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disentanglement with Futures, State, and Interaction;Proceedings of the ACM on Programming Languages;2024-01-05

2. Automatic Parallelism Management;Proceedings of the ACM on Programming Languages;2024-01-05

3. Efficient Parallel Functional Programming with Effects;Proceedings of the ACM on Programming Languages;2023-06-06

4. Parallelism in a Region Inference Context;Proceedings of the ACM on Programming Languages;2023-06-06

5. Entanglement detection with near-zero cost;Proceedings of the ACM on Programming Languages;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3