Integrating region memory management and tag-free generational garbage collection

Author:

ELSMAN MARTINORCID,HALLENBERG NIELS

Abstract

Abstract We present a region-based memory management scheme with support for generational garbage collection. The scheme features a compile-time region inference algorithm, which associates values with logical regions, and builds on a region type system that deploys region types at runtime to avoid the overhead of write barriers and to support partly tag-free garbage collection. The scheme is implemented in the MLKit Standard ML compiler, which generates native x64 machine code. Besides demonstrating a number of important formal properties of the scheme, we measure the scheme’s characteristics, for a number of benchmarks, and compare the performance of the generated executables with the performance of executables generated with the MLton state-of-the-art Standard ML compiler and configurations of the MLKit with and without region inference and generational garbage collection enabled. Although region inference often serves the purpose of generations, combining region inference with generational garbage collection is shown often to be superior to combining region inference with non-generational collection despite the overhead introduced by a larger amount of memory waste, due to region fragmentation.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Double-Ended Bit-Stealing for Algebraic Data Types;Proceedings of the ACM on Programming Languages;2024-08-15

2. Explicit Effects and Effect Constraints in ReML;Proceedings of the ACM on Programming Languages;2024-01-05

3. Reference Capabilities for Flexible Memory Management;Proceedings of the ACM on Programming Languages;2023-10-16

4. Parallelism in a Region Inference Context;Proceedings of the ACM on Programming Languages;2023-06-06

5. Garbage-Collection Safety for Region-Based Type-Polymorphic Programs;Proceedings of the ACM on Programming Languages;2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3