Pure iso-type systems

Author:

YANG YANPENGORCID,OLIVEIRA BRUNO C. D. S.

Abstract

Abstract Traditional designs for functional languages (such as Haskell or ML) have separate sorts of syntax for terms and types. In contrast, many dependently typed languages use a unified syntax that accounts for both terms and types. Unified syntax has some interesting advantages over separate syntax, including less duplication of concepts, and added expressiveness. However, integrating unrestricted general recursion in calculi with unified syntax is challenging when some level of type-level computation is present, since properties such as decidable type-checking are easily lost. This paper presents a family of calculi called pure iso-type systems (PITSs), which employs unified syntax, supports general recursion and preserves decidable type-checking. PITS is comparable in simplicity to pure type systems (PTSs), and is useful to serve as a foundation for functional languages that stand in-between traditional ML-like languages and fully blown dependently typed languages. In PITS, recursion and recursive types are completely unrestricted and type equality is simply based on alpha-equality, just like traditional ML-style languages. However, like most dependently typed languages, PITS uses unified syntax, naturally supporting many advanced type system features. Instead of implicit type conversion, PITS provides a generalization of iso-recursive types called iso-types. Iso-types replace the conversion rule typically used in dependently typed calculus and make every type-level computation explicit via cast operators. Iso-types avoid the complexity of explicit equality proofs employed in other approaches with casts. We study three variants of PITS that differ on the reduction strategy employed by the cast operators: call-by-name, call-by-value and parallel reduction. One key finding is that while using call-by-value or call-by-name reduction in casts loses some expressive power, it allows those variants of PITS to have simple and direct operational semantics and proofs. In contrast, the variant of PITS with parallel reduction retains the expressive power of PTS conversion, at the cost of a more complex metatheory.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting Iso-Recursive Subtyping;ACM Transactions on Programming Languages and Systems;2022-09-21

2. A dependently typed calculus with polymorphic subtyping;Science of Computer Programming;2021-08

3. Revisiting iso-recursive subtyping;Proceedings of the ACM on Programming Languages;2020-11-13

4. What Kind of Programming Language Best Suits Integrative AGI?;Artificial General Intelligence;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3