Implicitly threaded parallelism in Manticore

Author:

FLUET MATTHEW,RAINEY MIKE,REPPY JOHN,SHAW ADAM

Abstract

AbstractThe increasing availability of commodity multicore processors is making parallel computing ever more widespread. In order to exploit its potential, programmers need languages that make the benefits of parallelism accessible and understandable. Previous parallel languages have traditionally been intended for large-scale scientific computing, and they tend not to be well suited to programming the applications one typically finds on a desktop system. Thus, we need new parallel-language designs that address a broader spectrum of applications. The Manticore project is our effort to address this need. At its core is Parallel ML, a high-level functional language for programming parallel applications on commodity multicore hardware. Parallel ML provides a diverse collection of parallel constructs for different granularities of work. In this paper, we focus on the implicitly threaded parallel constructs of the language, which support fine-grained parallelism. We concentrate on those elements that distinguish our design from related ones, namely, a novel parallel binding form, a nondeterministic parallel case form, and the treatment of exceptions in the presence of data parallelism. These features differentiate the present work from related work on functional data-parallel language designs, which have focused largely on parallel problems with regular structure and the compiler transformations—most notably, flattening—that make such designs feasible. We present detailed examples utilizing various mechanisms of the language and give a formal description of our implementation.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disentanglement with Futures, State, and Interaction;Proceedings of the ACM on Programming Languages;2024-01-05

2. Efficient Parallel Functional Programming with Effects;Proceedings of the ACM on Programming Languages;2023-06-06

3. Responsive Parallelism with Synchronization;Proceedings of the ACM on Programming Languages;2023-06-06

4. Evaluating Functional Memory-Managed Parallel Languages for HPC using the NAS Parallel Benchmarks;2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2023-05

5. WARDen: Specializing Cache Coherence for High-Level Parallel Languages;Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization;2023-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3