A run-time algorithm for managing the granularity of parallel functional programs

Author:

Aharoni Gad,Feitelson Dror G.,Barak Amnon

Abstract

AbstractWe present an on-line (run-time) algorithm that manages the granularity of parallel functional programs. The algorithm exploits useful parallelism when it exists, and ignores ineffective parallelism in programs that produce many small tasks. The idea is to balance the amount of local work with the cost of distributing the work. This is achieved by ensuring that for every parallel task spawned, an amount of work that equals the cost of the spawn is performed locally. We analyse several cases and compare the algorithm to the optimal execution. In most cases the algorithm competes well with the optimal algorithm, even though the optimal algorithm has information about the future evolution of the computation that is not available to the on-line algorithm. This is quite remarkable considering we have chosen extreme cases that have contradicting optimal executions. Moreover, we show that no other on-line algorithm can be consistently better than it. We also present experimental results that demonstrate the effectiveness of the algorithm.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing recursive task parallel programs;Proceedings of the International Conference on Supercomputing - ICS '17;2017

2. Oracle-guided scheduling for controlling granularity in implicitly parallel languages;Journal of Functional Programming;2016

3. Oracle scheduling;ACM SIGPLAN Notices;2011-10-18

4. Improving granularity and locality of data in multiprocessor execution of functional programs;Parallel Computing;1996-12

5. Automatic spark strategies and granularity for a parallel functional language reducer;Parallel Processing: CONPAR 94 — VAPP VI;1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3