Lambda calculus with algebraic simplification for reduction parallelisation: Extended study

Author:

MORIHATA AKIMASAORCID

Abstract

Abstract Parallel reduction is a major component of parallel programming and widely used for summarisation and aggregation. It is not well understood, however, what sorts of non-trivial summarisations can be implemented as parallel reductions. This paper develops a calculus named λAS, a simply typed lambda calculus with algebraic simplification. This calculus provides a foundation for studying a parallelisation of complex reductions by equational reasoning. Its key feature is δ abstraction. A δ abstraction is observationally equivalent to the standard λ abstraction, but its body is simplified before the arrival of its arguments using algebraic properties such as associativity and commutativity. In addition, the type system of λAS guarantees that simplifications due to δ abstractions do not lead to serious overheads. The usefulness of λAS is demonstrated on examples of developing complex parallel reductions, including those containing more than one reduction operator, loops with conditional jumps, prefix sum patterns and even tree manipulations.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference63 articles.

1. Tannen, V. (1988) Combining algebra and higher-order types. In Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS’88), Edinburgh, Scotland, UK, July 5–8, 1988. IEEE Computer Society, pp. 82–90.

2. Parallelizing user-defined aggregations using symbolic execution

3. The third homomorphism theorem on trees

4. Filter-embedding semiring fusion for programming with mapreduce;Emoto;Formal Asp. Comput.,2012

5. Parallel functional programming on recursively defined data via data-parallel recursion

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays;Parallel Processing and Applied Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3