Building reliable, high-performance networks with the Nuprl proof development system

Author:

KREITZ CHRISTOPH

Abstract

Proof systems for expressive type theories provide a foundation for the verification and synthesis of programs. But despite their successful application to numerous programming problems there remains an issue with scalability. Are proof environments capable of reasoning about large software systems? Can the support they offer be useful in practice? In this article we answer this question by showing how the NUPRL proof development system and its rich type theory have contributed to the design of reliable, high-performance networks by synthesizing optimized code for application configurations of the ENSEMBLE group communication toolkit. We present a type-theoretical semantics of OCAML, the implementation language of ENSEMBLE, and tools for automatically importing system code into the NUPRL system. We describe reasoning strategies for generating verifiably correct fast-path optimizations of application configurations that substantially reduce end-to-end latency in ENSEMBLE. We also discuss briefly how to use NUPRL for checking configurations against specifications and for the design of reliable adaptive network protocols.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineering with Logic;Journal of the ACM;2019-01-12

2. Position paper: the science of deep specification;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2017-09-04

3. On Building Constructive Formal Theories of Computation Noting the Roles of Turing, Church, and Brouwer;2012 27th Annual IEEE Symposium on Logic in Computer Science;2012-06

4. Nuprl as Logical Framework for Automating Proofs in Category Theory;Logic and Program Semantics;2012

5. Russell's Orders in Kripke's Theory of Truth and Computational Type Theory;Handbook of the History of Logic;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3