Partially strict non-recursive data types

Author:

Nöcker Eric,Smetsers Sjaak

Abstract

AbstractValues belonging to lazy data types have the advantage that sub-components can be accessed without evaluating the values as a whole: unneeded components remain unevaluated. A disadvantage is that often a large amount of space and time is required to handle lazy data types properly. Many special constructor cells are needed to ‘glue’ the individual parts of a composite object together and to store it in the heap. We present a way of representing data in functional languages which makes these special constructor cells superfluous. In some cases, no heap at all is needed to store this data. To make this possible, we introduce a new kind of data type: (partially) strict non-recursive data types. The main advantage of these types is that an efficient call-by-value mechanism can be used to pass arguments. A restrictive subclass of (partially) strict non-recursive data types, partially strict tuples, is treated more comprehensively. We also give examples of important classes of applications. In particular, we show how partially strict tuples can be used to define very efficient input and output primitives. Measurements of applications written in Concurrent Clean which exploit partially strict tuples have shown that speedups of 2 to 3 times are reasonable. Moreover, much less heap space is required when partially strict tuples are used.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph rewriting semantics for functional programming languages;Computer Science Logic;1997

2. The implementation and efficiency of arrays in clean 1.1;Implementation of Functional Languages;1997

3. Unboxing using Specialisation;Functional Programming, Glasgow 1994;1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3