Higher order symbolic execution for contract verification and refutation

Author:

NGUYÊN PHÚC C.,TOBIN-HOCHSTADT SAM,VAN HORN DAVID

Abstract

AbstractWe present a new approach to automated reasoning about higher-order programs by endowing symbolic execution with a notion of higher-order, symbolic values. To validate our approach, we use it to develop and evaluate a system for verifying and refuting behavioral software contracts of components in a functional language, which we call soft contract verification. In doing so, we discover a mutually beneficial relation between behavioral contracts and higher-order symbolic execution. Contracts aid symbolic execution by providing a rich language of specifications serving as a basis of symbolic higher-order values; the theory of blame enables modular verification and leads to the theorem that verified components can't be blamed; and the run-time monitoring of contracts enables soft verification whereby verified and unverified components can safely interact. Conversely, symbolic execution aids contracts by providing compile-time verification and automated test case generation from counter-examples to verification. This relation between symbolic exuection and contracts engenders a virtuous cycle encouraging the gradual use of contracts.Our approach is able to analyze first-class contracts, recursive data structures, unknown functions, and control-flow-sensitive refinements of values, which are all idiomatic in dynamic languages. It makes effective use of off-the-shelf solvers to decide problems without heavy encodings. Counterexample search is sound and relatively complete with respect to a first-order solver for base type values and counter-examples are reported as concrete values, including functions. Therefore, it can form the basis of automated verification and bug-finding tools for higher-order programs. The approach is competitive with a range of existing tools—including type systems, flow analyzers, and model checkers—on their own benchmarks. We have built a prototype to analyze programs written in Racket and report on its effectiveness in verifying and refuting contracts.

Publisher

Cambridge University Press (CUP)

Subject

Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Summary-Based Compositional Analysis for Soft Contract Verification;2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM);2022-10

2. A formal foundation for symbolic evaluation with merging;Proceedings of the ACM on Programming Languages;2022-01-12

3. Corpse reviver: sound and efficient gradual typing via contract verification;Proceedings of the ACM on Programming Languages;2021-01-04

4. Sound and Complete Concolic Testing for Higher-order Functions;Programming Languages and Systems;2021

5. On Implementing Symbolic Controllability;Lecture Notes in Computer Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3