Abstract
Abstract
Participants that complete online surveys and experiments may be inattentive, which can hinder researchers’ ability to draw substantive or causal inferences. As such, many practitioners include multiple factual or instructional closed-ended manipulation checks to identify low-attention respondents. However, closed-ended manipulation checks are either correct or incorrect, which allows participants to more easily guess and it reduces the potential variation in attention between respondents. In response to these shortcomings, I develop an automatic and standardized methodology to measure attention that relies on the text that respondents provide in an open-ended manipulation check. There are multiple benefits to this approach. First, it provides a continuous measure of attention, which allows for greater variation between respondents. Second, it reduces the reliance on subjective, paid humans to analyze open-ended responses. Last, I outline how to diagnose the impact of inattentive workers on the overall results, including how to assess the average treatment effect of those respondents that likely received the treatment. I provide easy-to-use software in R to implement these suggestions for open-ended manipulation checks.
Publisher
Cambridge University Press (CUP)
Subject
Political Science and International Relations,Sociology and Political Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献