Abstract
Membranes define the outer boundary of the living protoplast and the internal compartmentation of plant cells. From a structural point of view, membranes consist of a lipid bilayer and proteins essential for functions such as solute transport, signal transduction, and numerous metabolic reactions. While membranes can represent a significant barrier to the free movement of many solutes, those with sufficient lipid solubility may move across membranes by dissolving into the lipid bilayer. However, selective membrane transport is generally observed for hydrophilic solutes such as mineral nutrients and cell metabolites. Such selective transport requires an input of metabolic energy, and in plants this occurs via the production of proton electrochemical gradients across the membrane by substrate- (ex. ATP, PPi) driven proton pumps. Selective solute transport is then mediated by membrane-associated secondary transport systems which utilize the proton electrochemical gradient to drive the transport process. This review of membrane structure and transport system function provides a background for a further examination of herbicide interactions with plant membranes.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献