Physiological Mechanism for Tall Morningglory (Ipomoea Purpurea) Resistance to DPX-PE350

Author:

Sunderland Shay L.,Burton James D.,Coble Harold D.,Maness Eleanor P.

Abstract

Laboratory experiments were conducted to determine the physiological mechanism of tall morningglory resistance to the experimental cotton herbicide DPX-PE350. Tall morningglory, a resistant species, was compared with entireleaf morningglory, a sensitive species, to evaluate inhibition at the site of action, the acetolactate synthase (ALS) enzyme (E.C.4.1.3.18), by DPX-PE350 as well as uptake, translocation, and metabolism of DPX-PE350. No differences were found between species in the concentration required to inhibit the ALS enzyme by 50% (I50), or in uptake and translocation of the herbicide. Tall morningglory metabolized the herbicide more rapidly than did entireleaf morningglory. Tall morningglory contained 3.6 and 1.4 times more metabolites of DPX-PE350 than did entireleaf morningglory 6 and 24 h after treatment, respectively. Tall morningglory produced anO-desmethyl metabolite from the 3,5-dimethoxypyrimidine moiety of DPX PE350 that was not found in entireleaf morningglory. These data suggest that the ability of tall morningglory to more rapidly metabolize DPX-PE350, possibly through the production of the pyrimidinyldesmethyl metabolite, may be the mechanism of resistance to DPX-PE350.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3