Herbicide Cross-Resistance in Triazine-Resistant Biotypes of Four Species

Author:

Fuerst E. Patrick,Arntzen Charles J.,Pfister Klaus,Penner Donald

Abstract

The cross-resistance of triazine-resistant biotypes of smooth pigweed (Amaranthus hybridusL. # AMACH), common lambsquarters (Chenopodium albumL. # CHEAL), common groundsel (Senecio vulgarisL. # SENVU), and the crop canola (Brassica napusL. var. Atratower) to a selection of herbicides was evaluated at both the whole plant and chloroplast level. The triazine-resistant biotypes of all four species showed a similar pattern of cross-resistance, suggesting that a similar mutation had occurred in each species. The four triazine-resistant biotypes were resistant to injury from atrazine [6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine], bromacil [5-bromo-6-methyl-3-(1-methylpropyl)-2,4-(1H,3H)pyrimidinedione], and pyrazon [5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone] and were slightly resistant to buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone}. The triazine-resistant biotypes were more sensitive to dinoseb [2-(1-methylpropyl)-4,6-dinitrophenol]. Triazine-resistant smooth pigweed showed resistance to cyanazine {2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl] amino]-2-methylpropanenitrile} and metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] with slight resistance to linuron [N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea] and desmedipham {ethyl [3-[[(phenylamino)carbony] oxy] phenyl] carbamate}. There was little or no resistance to diuron [N′-(3,4-dichlorophenyl)-N,N-dimethylurea], bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide], or dicamba (3,6-dichloro-2-methoxybenzoic acid). Parallel studies at the chloroplast level indicated that the degree of resistance to inhibition of photosynthetic electron transport was highly correlated with the degree of resistance to herbicidal injury. This correlation indicates that atrazine, cyanazine, metribuzin, pyrazon, bromacil, linuron, desmedipham, and buthidazole cause plant injury by inhibition of photosynthesis. This correlation also indicates that triazine resistance and cross-resistance at the whole plant level is due to decreased sensitivity at the level of photosynthetic electron transport. Cross-resistance to numerous additional herbicides was evaluated on isolated chloroplast thylakoid membranes and these results are discussed.14C-atrazine was displaced from thylakoid membranes by several herbicides, indicating that these herbicides compete for a common binding site.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3