Chlorophyll fluorescence for rapid detection of propanil-resistant barnyardgrass (Echinochloa crus-galli)

Author:

Norsworthy Jason K.,Talbert Ronald E.,Hoagland Robert E.

Abstract

Repeated use of propanil to control barnyardgrass (BYG) and other weeds in rice has led to the development of propanil-resistant barnyardgrass (R-BYG). R-BYG possesses elevated aryl acylamidase activity levels, which cause rapid metabolism of propanil analogous to propanil degradation in rice. The current screening method for determining propanil resistance in BYG requires about 10 mo. The present study examined the use of chlorophyll fluorescence as a more rapid method to identify propanil resistance in BYG soon after it is suspected. Chlorophyll fluorescence data from excised BYG leaf tissue (R-BYG and susceptible-BYG [S-BYG]; 13- to 41-d-old) exposed to 100 μM propanil for 2 h indicated a 95 to 100% inhibition of electron transport (photosynthesis inhibition) in both R- and S-BYG. However, when incubated in water in the dark for 22 h after the initial 2-h treatment, metabolism in R-BYG was sufficient to reduce levels of absorbed propanil and facilitate recovery. Lack of metabolism of propanil prevented recovery in S-BYG, thus allowing the two biotypes to be distinguished easily by the chlorophyll fluorescence assay. Further studies using this 2-h exposure to 100 μM propanil followed by a 22-h recovery period evaluated several assay parameters. A longer recovery time and the effects of various propanil concentrations were also evaluated. A herbicide dose-response curve showed the greatest difference in photosynthesis inhibition for both biotypes at about 100 μM propanil, but both biotypes were inhibited > 95% when treated with 400 μM propanil. Inhibition of photosynthesis in both biotypes was greatest when the recovery incubation temperature was 35 C compared to 20, 25, and 30 C. Fluorescence data from harvested tissue stored moist in plastic bags at 23 C (to simulate shipment) showed that biotypes could be differentiated even when received as late as 4 d after harvest. Thus, samples can be harvested from the field soon after propanil failure and resistance or susceptibility to propanil determined after only a few days. This technique can greatly reduce the time, space, and labor currently required to determine propanil resistance in BYG.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference31 articles.

1. Sunshine Mix, Sun Gro Horticulture Inc., Bellevue, WA 98004.

2. Resistance Mechanism of Propanil-Resistant Barnyardgrass

3. Ruff D. F. 1993. Physiological response, cultivar response, and potential residues of fomesafen in snapbeans (Phaseolus vulgaris L.). Ph.D. dissertation. University of Arkansas, Fayetteville. 120 pp.

4. Fluorometric detection of photosystem II herbicide penetration and detoxification in whole leaves;Voss;Weed Sci.,1984

5. The metabolism of 3,4-dichloropropionanilide in plants;Frear;Partial purification and properties of an aryl aclyamidase from rice. Phytochemistry,1968

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3