Author:
Peregoy Robert S.,Kitchen Lynn M.,Jordan Peter W.,Griffin James L.
Abstract
Glasshouse studies were undertaken to determine the effect of imposed moisture stress on the phytotoxicity of haloxyfop; the absorption, translocation, and metabolism of14C-haloxyfop; and14C-photoassimilate partitioning in johnsongrass and large crabgrass. Following foliar applications of haloxyfop at 30 and 25 g ai ha–1to large crabgrass and johnsongrass, respectively, control 15 days after treatment was 92% for nonstressed plants and less than 12% for water-stressed plants. Foliar absorption of14C-haloxyfop was reduced by moisture stress 1, 3, 5, and 24 h after treatment (HAT) in large crabgrass and 1, 3, 5, 48, and 72 HAT in johnsongrass. Regardless of stress treatment, absorption in both species reached a maximum by 24 HAT. Translocation of the radiolabel from the treated leaf to plant parts above and below the node of the treated leaf was inhibited by moisture stress in large crabgrass and johnsongrass at all harvest intervals beginning 5 and 24 HAT, respectively. Metabolism of14C-haloxyfop was not altered by moisture stress. Fixation of14CO2and subsequent distribution of the14C-photoassimilates were reduced by moisture stress. Decreases in photoassimilate translocation were similar to reductions in14C-haloxyfop translocation. Moisture stress reduced the phytotoxicity of haloxyfop in the two grasses, and the reduced activity of haloxyfop appeared to be partially related to changes in herbicide absorption and translocation.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献