Mobility of Herbicides in Soil Columns Under Saturated- and Unsaturated-Flow Conditions

Author:

Weber Jerome B.,Whitacre David M.

Abstract

Under unsaturated-flow conditions, bromacil (5-bromo-3-sec-butyl-6-methyluracil) was considerably more mobile than buthidazole {3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxyl-1-methyl-2-imidazolidinone}. Because of their high water solubilities, both herbicides were much more mobile than atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), prometon [2,4-bis (isopropylamino)-6-methoxy-s-triazine], or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Under saturated-flow conditions, buthidazole was leached through Lakeland loamy sand in slightly greater amounts than tebuthiuron {N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea} or CN-10-3510 (formerly VEL 3510) {1-β,β-dimethoxyl-1-methyl-3-[5-(1,1-dimethylethyl)-1,3, 4-thiadiazol-2-yl] urea}. Distribution of the three herbicides in the leached soil was similar and relatively uniform. In Lakeland loamy sand, 30 times as much tebuthiuron was leached under saturated-flow conditions as under unsaturated-flow conditions. Intermittent saturated-unsaturated-flow conditions resulted in four times as much leaching of tebuthiuron as unsaturated flow alone. Only one-tenth as much tebuthiuron leached under intermittent saturated-unsaturated-flow conditions as under saturated-flow conditions. Tebuthiuron added to Lakeland soil and oven-dried was retained in significantly greater amounts than when added to moist Lakeland soil. Low amounts of tebuthiuron leached through Lakeland loamy sand, Portsmouth sandy loam, and Rains silt loam, but high amounts leached through Davidson clay. Greater amounts of the herbicide were retained in the surface zones of the three former soils, but the inverse was the case for the Davidson soil.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference29 articles.

1. Pesticide Mobility in Soils II. Applications of Soil Thin-Layer Chromatography

2. Furness W. and Halawi M. H. 1976. Properties of some imidazolidinones and trials with buthidazole and its derivatives. Proc. Br. Crop Prot. Conf.-Weeds. pp. 731–738.

3. Mumford S. A. and Phillips J.W.C. 1929. The evaluation and interpretation of parachors. J. Chem. Soc. pp. 2112–2133.

4. VEL-5026 – A new herbicide for nonselective weed control;MacDiarmid;Proc. N.Z. Weed and Pest Control Conf.,1975

5. Determination of mobility and adsorption of agrochemicals on soils

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3