Abstract
SUMMARYTwenty-six soils from different parent materials were exhaustively cropped with ryegrass in the glasshouse. Soil and crop measurements revealed inter-relationships similar to those observed with Rothamsted soils (Part I) generally, except that 12 of 20 soils, ‘poor’ in K (as defined by the K intensity of the uncropped soil and the change in soil K intensity with cropping), gave patterns of K uptake by the ryegrass crop similar to those of soils ‘rich’ in K. This indicates that these soils contain some K reserves not differentiated from those accumulated by K-manuring in Rothamsted by laboratory measurements.The cumulative K yield of ryegrass was very significantly related to the K intensity of the uncropped soil. The relationships were improved slightly by allowing for differences in soil pH and organic carbon content. The cumulative K yields at 16 weeks and at 60 weeks were better related to the total clay (<2 µ) content than to the fine clay (< 0·2 µ) content of the soil. The K intensities of the cropped soils decreased to nearly 10–3 (AR) units after 16 weeks cropping (except the Harwell soil which took 3 years to do so), although large differences in K yield persisted until much later.Potassium-buffer capacity per unit clay content of the soil (by a laboratory method) was inversely related to the K intensity of the uncropped soil and to K uptakes at 16 and 60 weeks. The rea⋅ons for this apparent anomaly are discussed and a more correct basis for the units for K-buffering capacity is suggested. The buffer capacities of ‘rich’ soils in the laboratory and glasshouse experiments were significantly related but not of ‘ poor ’ soils.Soils exhausted by cropping released more K to ryegrass after a. drying-and-wetting cycle in amounts proportional to the clay content of the soil. This points to the need for caution in measurements to assess status after air-drying soils.
Publisher
Cambridge University Press (CUP)
Subject
Genetics,Agronomy and Crop Science,Animal Science and Zoology
Reference16 articles.
1. Vaidyanathan L. V. & Talibudeen O. (1968). Rate processes in the release of soil phosphate. J. Soil Sci. (in the Press).
2. A laboratory method for the evaluation of nutrient residues in soils
3. Talibudeen O. & Weir A. (1968) The ‘Harwell’ soil. Rep. Rothamsted exp. Stn. 1967, pp. 53–4.
4. Potassium reserves in British soils. I. The Rothamsted Classical Experiments;Dey;J. agric. Sci., Camb.,1968
5. THERMODYNAMICS OF K-Ca ION EXCHANGE IN SOILS1
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献