Author:
REN T.,ZOU J.,WANG Y.,LI X. K.,CONG R. H.,LU J. W.
Abstract
SUMMARYEstimating crop nutrient requirements for winter oilseed rape (Brassica napus L.) is a crucial step in optimizing fertilization to enhance seed yield and improve fertilizer use efficiency. In the present paper, a database composed of 1035 on-farm observations collected from 2005 to 2010 across the major winter oilseed rape production regions in China was used to evaluate internal nutrient efficiencies (kg seed per kg nutrient in plant dry matter); then the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model for winter oilseed rape was developed to describe the nutrient uptake-yield relationship of oilseed rape over a wide range of environmental conditions and predict the nutrient requirements for a target yield. After excluding observations with low harvest index values, <0·20, and excluding 0·025 of the highest and lowest internal nutrient efficiencies, the minimum and maximum internal nutrient efficiencies were estimated as 13·1 and 31·6 kg seed/kg nitrogen (N), 68·9 and 200·3 kg seed/kg phosphorus (P) and 8·9 and 31·1 kg seed/kg potassium (K), respectively. On the basis of the data settings, the balanced N, P and K uptake at different yield potential levels was calculated using a linear–parabolic–plateau curve with the QUEFTS model. Crop nutrient requirements increased linearly until the yield reached approximately 0·60–0·70 of the potential yield, and 46·0 kg N, 8·0 kg P and 57·1 kg K were found to be needed to produce 1000 kg of seed. The corresponding internal nutrient efficiencies were 21·8, 125·1 and 17·5 kg seed/kg N, P and K, respectively. However, when the target yields approached the yield potential, a decrease in internal nutrient efficiencies was detected in the model. The predicted nutrient requirement values simulated by the QUEFTS model compared well with observed values across a range of conditions. To conclude, the QUEFTS model was shown to be a practical and robust tool for assessing the crop nutrient requirements of winter oilseed rape.
Publisher
Cambridge University Press (CUP)
Subject
Genetics,Agronomy and Crop Science,Animal Science and Zoology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献