Studies on the breeding season and reproduction of the ewe Part III. The breeding season and artificial light Part IV. Studies on the reproduction of the ewe Part V. Mating behaviour and pregnancy diagnosis

Author:

Hafez E. S. E.

Abstract

During the course of three breeding seasons, daily observations of oestrus were undertaken on the following groups of ewes, all of which were running with ochred rams. One hundred and twenty ewes (pure bred and first-cross) of different breeds and ages, running with vasectomized rams under natural conditions. Twenty-eight grade Suffolk ewes fed on a submaintenance diet. Eighteen grade Suffolk ewes running with a fertile ram. Twenty ewes of several breeds exposed to artificial light.The effects of heredity (breed and individual), environment (season, year and nutrition), age and artificial light on the breeding season and related phenomena have been investigated. The results and conclusions were as follows:1. (a) There are breed differences in the extent of the breeding season, cycle length, incidence of silent heat and duration of heat (Table 29). (b) The duration of the breeding season is related to the geographical origin (latitude and altitude) of the breed, (c) The duration of the breeding season of the first-cross is intermediate between that of the two parents, (d) Individual differences in the number of oestrous cycles per ewe per season were more marked in the mountain breeds.2. (a) Of the ewe lambs, 79% exhibited oestrus during the shortest days only of the first breeding season. Their breeding season is not spread evenly about the shortest day as it is with adults. (b) The occurrence and length of the breeding season in ewe lambs is associated with early birth dates or with higher growth rates.3. (a) Significant differences exist between breeds in the age at first oestrus. (b) Ewe lambs born early in the season showed their first oestrus at later age and heavier weight than those born late.4. Annual differences in the duration of the breeding season, cycle length, incidence of silent heat and occurrence of first oestrus were negligible.5. (a) Submaintenance diet had no effect on the onset of the breeding season, but it converted oestrus into silent heat. Conception occurred less frequently after periods of underfeeding. (b) At high latitudes nutrition has only a minor effect on the breeding season of the ewe.6. (a) A constant high ratio of artificial darkness (8 hr. light: 16 hr. darkness) hastened the onset of the breeding season some 57 and 27 days in the two experimental groups. (b) A constant high ratio of artificial light (16 hr. light: 8 hr. darkness) hastened the end of the breeding season some 104 days on an average (in one experimental group), (c) There were breed differences in the latency of initiation and of cessation of the induced breeding season, (d) In the induced breeding season cycles of ovulation preceded the first oestrus, (e) Two thresholds of pituitary activity are suggested, one for the onset of ovulation, and the other for the manifestation of oestrus.7. (a) A high frequency of cycles outside the normal range (14–19 days) was observed in the mountain breeds and in ewe lambs. (b) The shortest average cycle length coincided with the shortest days of the year.8. A high frequency of silent heats (during the breeding season) was observed in the mountain breeds, in ewe lambs and during the second half of the breeding season.9. Oestrus was of longer duration in adults and yearlings than in ewe lambs.10. (a) Post-partum heat occurred in 56% of Suffolk ewes with an average lactation anoestrus of 35 days. (b) There is a relationship between the early onset of the breeding season and the incidence of post-partum heat, (c) Conception post-partum is partly inhibited by lactation.11. Mating behaviour was observed in animals of several breeds and ages (three patterns were recorded for ewes and eight patterns for rams).12. Irregular columnar cells in the vaginal smear of the ewe characterized late pregnancy.In addition, the breeding season of wild and domestic sheep was reviewed in relation to the environment with special reference to the length of daylight.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3