Abstract
SUMMARYGrasslands are one of the world's major ecosystems groups and over the last century their use has changed from being volunteer leys, or a resource on non-arable land, to a productive resource equal to any crop and managed as such. Many grasslands are now being acknowledged as having a multifunctional role in producing food and rehabilitating crop lands, in environmental management and cultural heritage. However, grasslands across the globe are under increasing pressure from increasing human populations, reduced areas with increasing livestock numbers, and declining terms of trade for livestock production, and they are managed to varying degrees of effectiveness. The complexity of grassland uses and the many aspects of grassy ecosystems require a framework wherein solutions for better management can be developed. The present paper discusses a generic approach to grassland management to satisfy these multiple objectives. A focus on ecosystem functionality, i.e. on water, nutrient and energy cycling and on the biodiversity required to sustain those functions, provides a means of resolving the dilemmas faced, through the intermediary, management-related, criteria of herbage mass, which also relates directly to animal production. Emphasis is placed on the opportunities to satisfy multiple objectives. A consideration of the basic relationships between stocking rate and animal production shows that the longer-term, economically optimal stocking rate is associated with improved environmental outcomes. There may be environmental objectives that go beyond economically sustainable limits for livestock producers and in those cases direct payments from the government or others will be needed. These are likely to be where degradation is clearly apparent. The achievement of desirable outcomes in grassland management that satisfy multiple objectives will require new areas of research that seek viable solutions for farmers and society.
Publisher
Cambridge University Press (CUP)
Subject
Genetics,Agronomy and Crop Science,Animal Science and Zoology
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献